Hamiltonicity of a class of toroidal graphs
نویسندگان
چکیده
منابع مشابه
Minimum Tenacity of Toroidal graphs
The tenacity of a graph G, T(G), is dened by T(G) = min{[|S|+τ(G-S)]/[ω(G-S)]}, where the minimum is taken over all vertex cutsets S of G. We dene τ(G - S) to be the number of the vertices in the largest component of the graph G - S, and ω(G - S) be the number of components of G - S.In this paper a lower bound for the tenacity T(G) of a graph with genus γ(G) is obtained using the graph's connec...
متن کاملCriticality of Counterexamples to Toroidal Edge-Hamiltonicity
A well-known conjecture of Grünbaum and Nash-Williams proposes that 4-connected toroidal graphs are hamiltonian. The corresponding results for 4-connected planar and projective-planar graphs were proved by Tutte and by Thomas and Yu, respectively, using induction arguments that proved a stronger result, that every edge is on a hamilton cycle. However, this stronger property does not hold for 4c...
متن کاملminimum tenacity of toroidal graphs
the tenacity of a graph g, t(g), is dened by t(g) = min{[|s|+τ(g-s)]/[ω(g-s)]}, where the minimum is taken over all vertex cutsets s of g. we dene τ(g - s) to be the number of the vertices in the largest component of the graph g - s, and ω(g - s) be the number of components of g - s.in this paper a lower bound for the tenacity t(g) of a graph with genus γ(g) is obtained using the graph's...
متن کاملHamiltonicity of automatic graphs
It is shown that the existence of a Hamiltonian path in a planar automatic graph of bounded degree is complete for Σ1 1 , the first level of the analytical hierarchy. This sharpens a corresponding result of Hirst and Harel for highly recursive graphs. Furthermore, we also show: (i) The Hamiltonian path problem for finite planar graphs that are succinctly encoded by an automatic presentation is ...
متن کاملCollapsible Graphs and Hamiltonicity of Line Graphs
Thomassen conjectured that every 4-connected line graph is Hamiltonian. Chen and Lai (Combinatorics and Graph Theory, vol 95, World Scientific, Singapore, pp 53–69; Conjecture 8.6 of 1995) conjectured that every 3-edge connected and essentially 6-edge connected graph is collapsible. Denote D3(G) the set of vertices of degree 3 of graph G. For e = uv ∈ E(G), define d(e) = d(u)+ d(v)− 2 the edge ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Slovaca
سال: 2020
ISSN: 1337-2211,0139-9918
DOI: 10.1515/ms-2017-0367